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1. Introduction

Recently O’Raifeartaigh models [1] raised some interest as appealing candidates for the

hidden sector of low-scale SUSY models. The main reason is the discovery of metastable

SUSY-breaking vacua in N = 1 SQCD [2], that can be seen in the low-energy effective

theory as vacua of an O’Raifeartaigh-type model. These models are perturbative and

calculable and they therefore have the advantage that their properties can be reliably

studied even if SUSY is spontaneously broken.

Most of the O’Raifeartaigh models featured in the literature have flat directions of

SUSY-breaking vacua at the classical level, parametrized by fields Xn of R-charge 2. Quan-

tum corrections lift these vacua in such a way that the true vacuum lies at Xn = 0 and

R-symmetry is unbroken. Shih noted that this is a consequence of the particular R-charge

assignment of these models: R-symmetry is unbroken in models which only have fields with

R = 0 or R = 2, whereas in models with more general R-charges there can be spontaneous

R-symmetry breaking [3].

The simplest model which breaks R-symmetry spontaneously for some values of its

parameters is:

W = fX + λXφ(1)φ(−1) + m1φ(3)φ(−1) +
1

2
m2φ

2
(1) (1.1)

where R(X) = 2 and R(φ(k)) = k. Classically this model has a flat direction of local

extrema given by φ(3) = φ(1) = φ(−1) = 0; this direction is parametrized by X with
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potential V (X) = |f |2 and is a local minimum for |X| <
m2

1m2

2λ2f
− f

2m2
. Quantum corrections

modify the tree-level potential as V (X) = |f |2+m2
X |X|2+. . . with m2

X < 0 in a large region

of the space of couplings. In this case the potential V (X) can have a (local) minimum away

from the origin and the R-symmetry is broken in this vacuum.

An interesting observation is that the above vacuum is metastable because of the

existence of a runaway direction [3]:

φ(1) = − f

λφ(−1)
, X =

m2f

λ2φ2
(−1)

, φ(3) =
m2f

2

m1λ2φ3
(−1)

, φ(−1) → 0 (1.2)

The runaway behavior of this model has two properties. First of all, the potential goes

to zero along the runaway direction, therefore the runaway vacuum is supersymmetric.

Secondly, the runaway direction can be seen as a rescaling of fields

ϕ(ǫ) = ǫ−R(ϕ)ϕ(0) , ǫ → 0 (1.3)

A natural question arises: is this behavior a feature of a large class of models with general

R-charges, or does it occur only in this example?

Another interesting observation is that this model cannot be extended with global sym-

metries under which the fields transform as complex representations.1 Global symmetries

are interesting because they can play an important role in mediating supersymmetry break-

ing: for example, they can be gauged and communicate SUSY breaking directly through

gauge interactions, as in [4 – 6] or through a messenger sector, as in [7 – 9]. Non-abelian

global symmetries can also be useful when looking for an ultraviolet completion of these

models as effective theories of strongly-coupled gauge theories, as in [2]. It is easy to write

a model with real representations, for example SO(N) fundamentals:

W = fX + λXφα
(1)φ

α
(−1) + m1φ

α
(3)φ

α
(−1) +

1

2
m2φ

α
(1)φ

α
(1) (1.4)

or to add other fields which interact only with X and play no role in breaking SUSY:

∆W = λ′Xϕ̄αϕα (1.5)

but it could be interesting to have an O’Raifeartaigh model with spontaneous R-symmetry

breaking where the SUSY-breaking sector contains fields in complex representations of a

flavour symmetry.

In this paper we address both these issues. We argue that many O’Raifeartaigh models

with general R-charge assignment have runaway behavior. Runaway directions in these

models are related to the R-symmetry of the theory, as in the above example. We also

study the simplest model with spontaneous R-symmetry breaking which contains fields in

the fundamental and antifundamental representations of U(N).

1The mass term for φ(1) requires that the representations R(φ(1)) ⊗simm R(φ(1)) ⊃ 1, therefore R(φ(1))

cannot be an irreducible complex representation; the same is true for the other fields, because R(φ(−1)) ⊗

R(φ(1)) ⊃ 1 and R(φ(3)) ⊗R(φ(1)) ⊃ 1.
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In section 2.1 we prove the existence of runaway directions in a simple class of models

with a single pseudomodulus X, analyzed in [3]. We show that in all models with a

field with R 6= 0, 1, 2 there is a runaway direction and that the potential goes to zero

along this direction, therefore the runaway vacuum is supersymmetric. In section 2.2

we discuss the case of more pseudomoduli. We show examples of models with SUSY

and non-SUSY runaway vacua and we argue that most of the models in this class have

runaway directions. In section 2.3 we end with some considerations about runaway vacua

in general O’Raifeartaigh models. In section 3 we study the simplest model which contains

fields in complex representations of a flavour symmetry and we show that R-symmetry is

spontaneously broken in this model for some range of parameters. The R-breaking vacua

are always metastable.

Several appendices contain those explicit computations, arguments and proofs which

were omitted from the main text not to break the logical flow. In appendix A we extend

the analysis of spontaneous R-symmetry breaking to the case of models with more pseu-

domoduli. In appendix B we complete the proof of section 2.1 on the existence of runaway

directions. In appendix C we discuss some sufficient conditions for runaway directions in

models with more pseudomoduli. Finally, in appendix D we explain the relation between

runaway directions and the issues of metastability discussed recently in the literature.

2. Runaway directions

2.1 Models with a single pseudomodulus

We consider a simple class of models considered in [3]. These models are generalizations

of the model (1.1): they consist of a chiral superfield X with R(X) = 2 and nφ chiral

superfields φi. All these fields have a canonical Kähler potential and a superpotential

W = fX +
1

2
(M ij + N ijX)φiφj (2.1)

where M,N are symmetric complex matrices with det(M) 6= 0. Note that the last condition

constrains both the R-charges and the field content of the model; for example, it implies

that the number of fields with R = r is the same as the number of fields with R = 2 − r.

Moreover, R-symmetry constrains the possible nonzero entries in these matrices:

M ij 6= 0 ⇒ R(φi) + R(φj) = 2 , N ij 6= 0 ⇒ R(φi) + R(φj) = 0 (2.2)

Apart from these restrictions and those coming from other symmetries, we consider M,N

to be generic.

According to general arguments, R-symmetry implies that this superpotential can

break SUSY [10]. In fact, it is shown in [3] that SUSY is always broken in these models.

It is also shown that a necessary condition for having R-symmetry breaking vacua is that

fields with R-charges different from 0 and 2 exist, and it is argued that this is also sufficient

for a wide range of parameters.
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Let’s review the argument for SUSY breaking in these models. The equations for a

SUSY vacuum ∂aW = 0 are

f +
1

2
N ijφiφj = 0 (2.3)

(M ij + N ijX)φj = 0 (2.4)

and cannot be solved simultaneously. To prove this it is sufficient to note that if det(M +

NX) 6= 0 the only solution for (2.4) is φi = 0 which cannot satisfy (2.3). It can be shown

that det(M + NX) = det(M) if R-symmetry is required, and SUSY is therefore broken

in all models with det(M) 6= 0. However, this argument only refers to finite values of the

fields and does not exclude a supersymmetric runaway vacuum.

To obtain a SUSY runaway vacuum, we classify the equations (2.4) according to their

R-charge:

(M ij + N ijX)φj = 0 , R(φi) < 2 (2.5)

(Mkj + NkjX)φj = 0 , R(φk) = 2 (2.6)

(Mmj + NmjX)φj = 0 , R(φm) > 2 (2.7)

The equations (2.5), (2.6), (2.7) have R-charges positive, zero and negative respec-

tively. Given the above argument, there is no solution for the system of equa-

tions (2.3), (2.5), (2.6), (2.7). In fact the equations (2.3), (2.6), (2.7) are not compatible,

because (2.3) requires at least one field with non-positive R-charge to be nonzero, while

equations (2.6), (2.7) force all fields with non-positive R-charge to zero. However there

could be a field configuration X ′, φ′
i which solves the subsystem (2.3), (2.5), (2.6). If this

is the case, the potential of these fields is

V =
∑

R(φm)>2

|(Mmj + NmjX ′)φ′
j |2 (2.8)

and it goes to zero along the direction parametrized by ǫ in (1.3):

φi(ǫ) = ǫ−R(φi)φ′
i , X(ǫ) = ǫ−2X ′ , ǫ → 0 (2.9)

This means that the theory cannot have a lower ground state, and there is a runaway

direction parametrized by non-unitary R-symmetry transformations (2.9).

In appendix B we prove that in this class of models it is always possible to

solve (2.3), (2.5), (2.6) at the same time if there are fields with2 R 6= 0, 1, 2. For the mod-

els (2.1) which satisfy this condition, this result implies that local minima of the potential

always correspond to metastable vacua, and that the potential shows a runaway behav-

ior. The properties of these models are therefore very different from usual O’Raifeartaigh

models.

2This is not completely correct, because R-charge is defined only up to addition of other U(1) charges.

So a more correct formulation is: we can always solve (2.3), (2.5), (2.6) at the same time if for every choice

of R-charges there is at least a field with R 6= 0, 1, 2.
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Many models in this class have metastable R-breaking vacua. In fact the presence

of fields with R 6= 0, 1, 2 in these models corresponds both to the necessary condition for

spontaneous R-symmetry breaking and to the sufficient condition for runaway behavior. An

interesting consequence is that for this class of models, spontaneous R-symmetry breaking

implies metastability.

2.2 Models with more pseudomoduli

To understand what can happen in more general models, we add to the previous models a

set of fields Ya with R(Ya) = 2, canonical Kähler potential and superpotential

W = fX +
1

2
(M ij + N ijX + Qij

a Ya)φiφj (2.10)

where Qa are generic symmetric complex matrices with

Qij
a 6= 0 ⇒ R(φi) + R(φj) = 0 (2.11)

Similarly to the previous case, these models break SUSY. The proof is identical to the

previous one if we substitute NX with NX + QaYa, because it depends only on the prop-

erties (2.2), (2.11). These models can also have R-symmetry breaking vacua for some values

of parameters. This is obvious in the limit Qa → 0, where they reduce to the models (2.1).

An analysis of R-symmetry breaking in models with more pseudomoduli is presented in

appendix A.

The analysis of runaway directions is different from the case with a single pseudomod-

ulus. To see the difference, we analyze some simple examples:3

• This is a simple modification of the Shih model (1.1) with a Y field:

W = fX + (λX + ηY )φ(1)φ(−1) + m1φ(3)φ(−1) +
1

2
m2φ

2
(1) (2.12)

Classically this model has flat directions of SUSY-breaking vacua with φ(3) = φ(1) =

φ(−1) = 0 for some range of parameters. These flat directions are parametrized

by X,Y and are lifted by quantum effects. As in the original model, the quantum

vacuum can break the R-symmetry, depending on the choice of parameters.

Here the equations ∂XW = 0, ∂Y W = 0 have R = 0 but cannot be solved at the

same time. This means that there are no SUSY runaway vacua. However there is a

runaway direction

φ(1) = − f

λ′φ(−1)
, X +

η

λ
Y =

m2f

λ′2φ2
(−1)

, φ(3) =
m2f

2

m1λ′2φ3
(−1)

, φ(−1) → 0 (2.13)

with λ′ = (|λ|2 + |η|2)/λ̄. This non-SUSY runaway vacuum minimizes the potential

and the other vacua are therefore metastable.

3Note that throughout this paper the indices in parentheses correspond to the R-charges of the fields.
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• This simple model has a U(1) symmetry φ±
(k) → e±iθφ±

(k) and shows a different be-

havior:

W = fX + (λ+X + η+Y )φ+
(1)φ

−
(−1) + (λ−X + η−Y )φ+

(−1)φ
−
(1) +

+m3φ
+
(3)φ

−
(−1) + m1φ

+
(1)φ

−
(1) + m−1φ

+
(−1)φ

−
(3) (2.14)

Here we can solve all the equations with R > 0 in terms of φ+
(−1),φ

−
(−1),X,Y as in the

models of section 2.1, obtaining φ±
(1) = −(λ∓X +η∓Y )φ±

(−1)/m1. The equations with

R = 0 become

fm1 − [2λ+λ−X + (λ+η− + λ−η+)Y ]φ+
(−1)φ

−
(−1) = 0 (2.15)

[2η+η−Y + (λ+η− + λ−η+)X] φ+
(−1)φ

−
(−1) = 0 (2.16)

and can be easily solved with φ+
(−1)φ

−
(−1) 6= 0. Then there is a SUSY runaway vacuum

which corresponds to a field rescaling φ+
(−1), φ

−
(−1) → 0.

Let’s analyze the general case. The equations for a SUSY vacuum are:

f +
1

2
N ijφiφj = 0 (2.17)

1

2
Qij

a φiφj = 0 (2.18)

(M ij + N ijX + Qij
a Ya)φj = 0 , R(φi) < 2 (2.19)

(Mkj + NkjX + Qkj
a Ya)φj = 0 , R(φk) = 2 (2.20)

(Mmj + NmjX + Qmj
a Ya)φj = 0 , R(φm) > 2 (2.21)

As in the case with a single pseudomodulus, the equations (2.17), (2.20), (2.21) are not

compatible. Then there are three cases:

(a) If we can solve all the equations with non-negative R-

charge (2.17), (2.18), (2.19), (2.20) at the same time, we can then rescale the

solution as in (1.3) and obtain a runaway direction. The runaway vacuum is

supersymmetric, and therefore all other vacua, if any, are metastable.

This is what happens in model (2.14). This case often happens for small nY .

(b) If it is not possible to solve the equations (2.17), (2.18), (2.19), (2.20) for any

choice of R-charges, we look for absolute minima ϕmin
a of the potential Vmin(ϕ) =

min(V+(ϕ), V−(ϕ)) with respect to all fields and all choices of R-symmetries, where

V+ and V− are

V+ =
∑

R(ϕa)≤2

|∂ϕaW |2 , V− =
∑

R(ϕa)≥2

|∂ϕaW |2 (2.22)

Now there are two possibilities:
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(b1) If there are ϕmin
a which solve both (2.19) and (2.21), these are the true vacua of

the model, with a flat direction parametrized by R-charge rescalings.

This is what happens in original O’Raifeartaigh model and in all models with

R=0,2.

(b2) Suppose that the absolute minimum is at V+(ϕmin
a ). If there are no field

configurations ϕmin
a which solve (2.19), (2.21) but there is a ϕmin

a which only

solves (2.19), we can then rescale this solution as in (1.3) and obtain a runaway

direction. The runaway vacuum is not supersymmetric but it corresponds to the

true vacuum of the system and therefore all other vacua, if any, are metastable.

The same if we exchange (2.19) with (2.21) and V+ with V−.

This is what happens in model (2.12). This case often happens for large nY .

(c) The last possibility is that absolute minima of Vmin do not solve (2.19) nor (2.21).

In this case there are no general results, but there can be non-SUSY stable vacua or

runaway directions, depending on the details of the models.

A model can belong to one or another of the above cases, depending on its parameters and

field content.

It is possible to find sufficient conditions for the existence of runaway directions which

consider only the field content of the model. If Ya have no flavor charges then, roughly

speaking, there are runaway directions if nY & nφ/2 and there are SUSY runaway vacua

if nY . nφ/2. There is a (small) window of models without runaway vacua, but these

conditions imply that most of these models have runaway directions. The precise conditions

and their proofs can be found in appendix C.

2.3 General considerations

The interesting result of the previous sections is that many O’Raifeartaigh models have

a runaway behavior. In this section we argue that this behavior is quite common in

O’Raifeartaigh models with general R-charge assignments.

We briefly review the usual O’Raifeartaigh models in our approach. (For more details

about these models, see the lectures [11].) The superpotential is

W =
∑

n

Xngn(φi) (n = 1 . . . nX , i = 1 . . . n0) (2.23)

where R(Xn) = 2, R(φi) = 0. These models break SUSY because the conditions gn(φi) = 0

are generally not compatible if nX > n0. The fields φi are determined by minimization of

V =
∑

n |gn(φi)|2; this means that the equations
∑

n Xn∂jgn = 0 have at least a nonzero

solution Xn = ḡn(φ̄i). Rescaling this solution with respect to the R-charges, we obtain a

flat direction of minima.4

When there are fields with R 6= 0, 1, 2 the picture changes completely. In this case

equations for SUSY vacua have generically R > 0, R = 0, R < 0 and because of R-symmetry

4Actually there is a (nX −n0)-dimensional space of solutions. R-symmetry rescaling acts as a dilatation

in this space.
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it is not possible to solve all these equations. However, it is sufficient to solve the equations

with R ≥ 0 and then rescale all fields as in (1.3) to obtain a runaway direction with V → 0.

If we consider a generic (possibly non-renormalizable) superpotential, the number of

equations with R ≥ 0 is usually smaller than the number of fields on which these equations

depend, so they can be often solved. This means that runaway directions are common in

these models, and that SUSY-breaking vacua of these models are generally metastable. We

have seen in section 2.1 an interesting class of models which show this behavior.

It can also happen that only equations with R ≤ 0 can be solved. This is not common

in the models studied in the previous sections, but can happen in general models. An

example which appeared early in the literature is the runaway model of [12]:

W = fX + αX2φ (2.24)

with R(X) = 2, R(φ) = −2. In this model there are no equations with R < 0, so if we

solve the R = 0 equation f + 2αXφ = 0 and then rescale the fields as φ → ǫ−2φ,X → ǫ2X

we find a runaway direction with V (X,φ) → 0 as ǫ → 0. This runaway vacuum is the only

vacuum of this model.

As we have seen in section 2.2, general models can also have different behavior. For

example there can be a runaway direction with V → V∞ > 0. This happens when the

equations with R > 0 (or R < 0) can be solved, but it is not possible to solve those

with R = 0 at the same time. This runaway vacuum is the ground state of the theory

if V∞ = minϕiVR=0(ϕi), otherwise it can be the lowest vacuum of the theory or not,

depending on the model and its parameters. Other models can have stable SUSY-breaking

vacua or flat directions, as the usual O’Raifeartaigh models.

It is interesting that a relation often exists between R-symmetry breaking and metasta-

bility. In [13] it is argued that metastability is a general feature of realistic models of SUSY

breaking. In fact R-symmetry must be a good symmetry for the theory to break SUSY, but

a small explicit R-symmetry breaking interaction is needed to give mass to the R-axion; this

explicit breaking generically restores supersymmetry in vacua far away from the origin of

field space. Near the origin, R-symmetry is an approximate symmetry and SUSY is sponta-

neously broken in a metastable vacuum. It is not clear if metastability in the models of [13]

and in our models are related. Some hints in this direction are discussed in appendix D,

where it is shown that runaway directions are often remnants of supersymmetric vacua

generated by (small) explicit R-breaking terms in the superpotential.

Besides, the fact that runaway directions appear naturally in many O’Raifeartaigh

models leads to speculations about possible applications in cosmology. In fact runaway

fields could play the role of the inflaton field if they could be stabilized at large vevs.

3. Models with global symmetries

The models discussed in the previous sections can have non-abelian global symmetries.

However models which necessarily have a field with R = 0, 1 can have only fields in real

representations. An example of such a case is this small modification of the original Shih

– 8 –
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model (1.1) where φ(−1), φ(1), φ(3) are SO(N) fundamentals:

W = fX + λXφα
(1)φ

α
(−1) + m1φ

α
(3)φ

α
(−1) +

1

2
m2φ

α
(1)φ

α
(1) (3.1)

By looking at the Coleman-Weinberg formula

V
(1−loop)
eff =

1

64π2
Tr

(

M4
B ln

M2
B

Λ2
−M4

F ln
M2

F

Λ2

)

(3.2)

it is easy to see that the effective potential is related to that of the original Shih model by

V
(1−loop)
eff (X)SO(N) = NV

(1−loop)
eff (X). Then the analysis in [3] goes unchanged (except for

the height of the potential barrier for the metastable vacuum, which is not relevant) and the

model shows spontaneous non-hierarchical R-symmetry breaking in a metastable vacuum

for a wide range of parameters. The flavour symmetry is unbroken in the metastable

vacuum.

If we wish to introduce complex representations, we must consider models without

R = 0, 1 fields. The simplest example is

W = fX + XN5φ
α
(5)φ(−5)α + XN3φ

α
(3)φ(−3)α +

+M7φ
α
(7)φ(−5)α + M5φ

α
(5)φ(−3)α + M3φ

α
(3)φ(−1)α (3.3)

where φ(7), φ(5), φ(3) are fields in the fundamental representation of a U(N) flavour sym-

metry and φ(−5), φ(−3), φ(−1) are in the antifundamental.5 Also in this case we have

V
(1−loop)
eff (X)U(N) = NV

(1−loop)
eff (X), therefore all relevant properties can be found from

the model without the flavour symmetry:

W = fX + XN5φ(5)φ(−5) + XN3φ(3)φ(−3) +

+M7φ(7)φ(−5) + M5φ(5)φ(−3) + M3φ(3)φ(−1) (3.4)

Now we have to study R-symmetry breaking in this model. All parameters can be

chosen real and positive. The condition |M−2fN | ≪ 1 is generally sufficient to avoid

tachyonic directions for small X, so we choose f/M2
5 to be small.

Numerical minimization of the Coleman-Weinberg potential for the model (3.4) shows

that there is spontaneous R-symmetry breaking in some region of the parameter space, in

particular for N3 ∼ N5 and M3,M7 < M5, as can be seen in figure 3.

It is possible to show analytically that R-symmetry breaking occurs in this region. It

is possible to expand the Coleman-Weinberg potential at lowest order in |M̂−2fN̂ | and X

and confirm the numerical results. The potential has the form V (X) = V0 + m2
X |X|2 +

λX |X|4 + O(|X|6). In figure 3 we plot the expressions found for m2
XM2

5 /f2, λXM4
5 /f2 as

functions of M3/M5 in the case M3 = M7, N3 = N5 = 1 and f/M2
5 ≪ 1.

We have studied the simplest model with complex representations, but we can also

consider models with more fields. The results coming from numerical minimization are the

5For a generic representation R of a group G, the only modification is V
(1−loop)
eff (X)R(G) =

dim(R(G))V
(1−loop)
eff (X).
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Figure 1: The white area is the region of

the plane (M7/M5, M3/M5) where there is

spontaneous R-symmetry breaking for N3 =

N5 = 1 and f/M2

5
= 0.001. (We thank M.

Cortelezzi for collaboration.)

Figure 2: The white area is the region of the

plane (N5, N3) where there is spontaneous R-

symmetry breaking for M3/M5 = M7/M5 =

0.25 and f/M2

5
= 0.001.

Figure 3: Plot of m2

X
M2

5 /f2 as a function

of M3/M5.

Figure 4: Plot of λXM4

5/f2 as a function

of M3/M5.

same: these models have metastable quantum vacua which break R-symmetry for some

range of parameters.

In models with more pseudomoduli the range of parameters for spontaneous R-

symmetry breaking becomes wider, because a linear combination of X and Ya which ac-

quires a negative m2 is a sufficient condition for R-symmetry breaking. Numerical studies

indicate that there are stable vacua which break R-symmetry in a large fraction of the

parameter space for parameters Nij ,Mij/M of order O(1) and small f/M [14]. Non-

hierarchical spontaneous R-symmetry breaking seems therefore a common feature of these

models: this opens interesting possibilities for realistic model building.

It would be interesting to explore the possibility of direct mediation of SUSY breaking

using the model (3.3). This model could be made natural as in [15], while the global
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symmetry could be gauged and then mediate SUSY breaking. Convincing models of direct

mediation appeared for example in [4, 5] based on the ISS model [2], while model building

without or with broken R-symmetries is discussed in [16, 17]. It could be possible to obtain

similar results with some models of this section.
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A. Models with more pseudomoduli

We generalize the analysis of [3] to include models with more pseudomoduli Ya. The trick

used in [3] is to rewrite the potential (3.2) as

V
(1−loop)
eff = − 1

32π2

∫ ∞

0
dv v5

(

1

v2 + M2
B

− 1

v2 + M2
F

)

(A.1)

The terms in the Coleman-Weinberg potential which are quadratic in X,Ya can be

written as

Vquad =
1

16π2
Tr

∫ ∞

0
dv v3

[

1

v2 + M̂2 + fN̂

(

Ŷ 2 − 1

2
{M̂, Ŷ } 1

v2 + M̂2 + fN̂
{M̂, Ŷ }

)

+

− 1

v2 + M̂2

(

Ŷ 2 − 1

2
{M̂, Ŷ } 1

v2 + M̂2
{M̂, Ŷ }

)]

(A.2)

where

M̂ =

(

0 M †

M 0

)

, N̂ =

(

0 N †

N 0

)

, Ŷ =

(

0 (NX + QaYa)
†

NX + QaYa 0

)

(A.3)

We consider the case of small f , because in this limit we can neglect the possibility of

tachyonic directions of φ fields in a large range of values of X,Ya around the origin of the

flat directions. Then at the lowest nonzero order in |M̂−2fN̂ | this expression reduces to

Vquad =
f2

32π2
Tr

∫ ∞

0
dv v3

[

M1(v)M†
1(v) −M2(v)M†

2(v)
]

(A.4)

with

M1(v) =
1

√

v2 + M̂2

(

N̂

√
2v

v2 + M̂2
Ŷ

)

1
√

v2 + M̂2
(A.5)

M2(v) =
1

√

v2 + M̂2

(

N̂
M̂

v2 + M̂2
Ŷ + Ŷ

M̂

v2 + M̂2
N̂

)

1
√

v2 + M̂2
(A.6)
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after eliminating some terms which do not contribute to the trace. The two terms are

generally of the same order, but the contribution of the first term is always positive, while

the second term always gives a negative contribution. Choosing Ya = 0, this expression is

consistent with the corresponding formula in [3].

If this expression is negative for some choice of (X,Ya) = (x, ya) then the classical

vacuum X = 0, Ya = 0 is unstable because the linear combination x̄X + ȳaYa of these fields

has negative m2. In this case there can be an R-symmetry breaking vacuum along one of

these tachyonic directions.

It is clear that in these models the range of parameters for spontaneous R-symmetry

breaking is much bigger than in models with a single pseudomodulus. In fact there are

many directions in field space X,Ya which can be tachyonic, including the original one

X 6= 0, Ya = 0.

B. Solvability of R ≥ 0 equations

In this appendix we prove that it is always possible to solve the system of equa-

tions (2.3), (2.5), (2.6).

First of all, note that if there is a solution φ′
i,X

′ to (2.5), (2.6) which satisfies

N ijφ′
iφ

′
j 6= 0, the equation (2.3) can be solved by rescaling all fields φ′

i → ρφ′
i by a factor

ρ = (−f/N ijφ′
iφ

′
j)

1/2. Therefore we only have to prove that (2.5), (2.6) can be solved with

N ijφ′
iφ

′
j 6= 0.

The set of fields φi of a given model (2.1) can be decomposed into minimal subsets

in such a way that two fields belonging to different subsets cannot appear in the same

equation or in the same term of the superpotential.6 Each field φ(r) interacts with X and

with fields φ(2−r)j , φ(−r)j only and each equation has the form

N ij
(r,−r)Xφ(r)j + M ij

(2+r,−r)φ(2+r)j = 0 (B.1)

involving X and two fields whose R-charges differ by 2. Different subsets give different

systems of equations with no fields in common, so we will work with fields belonging to a

minimal subset only, and we will neglect all the fields belonging to other subsets.

Let’s prove the theorem for the case in which R-charges can be chosen in such a way

that no field has R = 0 or R = 1. (We can always redefine R-charges by adding charges of

U(1) global symmetries.) First of all, note that it is always possible to choose an R-charge

assignment so that all fields have integer R-charge. In fact if R-charges are not integer

it is sufficient to consider the highest one Rmax and redefine them in the following way:

R(ϕ) → ⌈R(ϕ)⌉ if R(ϕ)−Rmax is an even integer, R(ϕ) → ⌊R(ϕ)⌋ otherwise. A field with

R(ϕ) − Rmax even is coupled only with fields with R(ϕ) − Rmax not even, therefore this

defines a consistent R-charge assignment with only integer R-charges.

If there are no fields with R = 0 or R = 1, we have a set of fields of 2m different

R-charges φ(k)j , φ(2+k)j . . . φ(2m+k)j and φ(2−k)j , φ(−k)j . . .φ(2−2m−k)j with integers k,m

satisfying k > 2,m > 1. Every term in the superpotential couples fields with R-charges

6For example, fields with even and odd R-charge belong to different subsets.
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of opposite sign, therefore there is an accidental U(1) symmetry whose charge is S(φi) =

sign(R(φi)). Using this symmetry, we redefine the R-symmetry to obtain φ+
(−1)j , φ+

(1)j

. . . φ+
(2m−1)j and φ−

(3)j , φ−
(1)j . . .φ−

(−2m+3)j and the equations (2.5), (2.6) become as follow:

N ij
(−2m+3,2m−3)Xφ+

(2m−3)j + M ij
(−2m+3,2m−1)φ

+
(2m−1)j = 0

N ij
(−2m+5,2m−5)Xφ+

(2m−5)j + M ij
(−2m+5,2m−3)φ

+
(2m−3)j = 0

. . .

N ij
(1,−1)Xφ+

(−1)j + M ij
(1,1)φ

+
(1)j = 0

N ji
(1,−1)Xφ−

(1)j + M ji
(3,−1)φ

−
(3)j = 0

N ji
(−1,1)Xφ−

(−1)j + M ji
(1,1)φ

−
(1)j = 0 (B.2)

where N ij
k,k′ couples φ−

(k)i and φ+
(k′)j and the same happens for M ij

k,k′.

We have two systems of equations containing φ+ and φ− fields respectively. For each

fixed value of X,φ−
(−1)j , φ

+
(−1)j we have two linear systems of n+, n− equations in n+, n−

variables, which can always be solved provided that the related linear operators have

nonzero determinants. This condition is verified because these determinants are prod-

ucts of det(M(2−k,k)) and these cannot be zero because det(M) =
∏

k det(M(2−k,k)) 6= 0. If

we choose φ−
(−1)j , φ

+
(−1)j to be different from zero7 , then also φ−

(1)j , φ
+
(1)j are nonzero and

generically N ijφiφj 6= 0. This completes the proof of this case.

Now we will prove the theorem for the case with φ(1). The equations (2.5), (2.6)

become:

N ij
(2m−3,−2m+3)Xφ(2m−3)j + M ij

(2m−1,−2m+3)φ(2m−1)j = 0

N ij
(2m−5,−2m+5)Xφ(2m−5)j + M ij

(2m−3,−2m+5)φ(2m−3)j = 0

. . .

N ij
(−1,1)Xφ(−1)j + M ij

(1,1)φ(1)j = 0 (B.3)

and, applying the same argument we used above, choosing φ(−1)j 6= 0 is a sufficient condi-

tion. The case with φ(0) is very similar, with equations:

N ij
(2m−2,−2m+2)Xφ(2m−2)j + M ij

(2m,−2m+2)φ(2m)j = 0

N ij
(2m−4,−2m+4)Xφ(2m−4)j + M ij

(2m−2,−2m+4)φ(2m−2)j = 0

. . .

N ij
(0,0)Xφ(0)j + M ij

(2,0)φ(2)j = 0

N ij
(0,−2)Xφ(−2)j + M ij

(2,0)φ(0)j = 0 (B.4)

and choosing φ(−2)j 6= 0 is enough.

7The requirements here and in the other cases should be stated more precisely. For example, these fields

have to be chosen such that they do not belong to the kernel of the matrices N(−1,1), N(1,−1) respectively.

However similar conditions are easily satisfied for generic nonzero fields.
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To complete the proof, we must discuss what happens when there are abelian or non-

abelian symmetries which constrain the form of M,N . The only difference is that now the

equations are classified not only by their R-charge, but also by other charges. However this

has no effect on the above arguments, provided that we consider systems of equations of

the same charge.8 This completes the proof.

C. Conditions for runaway

We discuss some conditions for the existence of runaway directions. We consider only the

case of minimal subsets, generic couplings and no symmetries. We denote the number of

φ fields with nφ, the number of Y fields with nY and the number of φ fields of R-charge j

with n(j) (or n±
(j) for φ±).

If it is possible to solve all the equations with R > 0 for a generic choice of the fields φi

which appear in VR=0, then it is always possible to minimize V+ (or V−). If the minimum is

zero, there is a SUSY runaway direction, otherwise there is a non-SUSY runaway vacuum.

In models with no fields with R = 0, 1, this is possible if nY ≥ nφ

2 +n−
(1)−n+

(2m−1)−1. To

prove this, we consider the R-charge choice of appendix B. We can see that the equations

with R > 0 are
nφ

2 + n−
(1) generic linear equations in nY + 1 + n+

(2m−1) variables and they

can be solved if the above condition is satisfied.

In models with a field with R = 1 it is possible to repeat the above argument and

obtain the condition nY ≥ nφ

2 +
n(1)

2 − n(2m−1) − 1.

In models with a field with R = 0 the argument is slightly different, because in this

case we need to solve also equations with R = 0 which contain X,Ya. Considering also

these equations, we obtain the condition nY ≥ nφ

2 + n(0) − n(2m) − 1.

The above conditions imply SUSY or (generally) non-SUSY runaway vacua. To obtain

conditions which imply SUSY runaway vacua, we need to solve all the equations with

R ≥ 0. Consider the case with no fields with R = 0, 1. Solving all the equations with

R > 0, we end with a set of nY + 1 equations with R = 0. The first nY are of the

form
∑

k<3 φ+
(−1)P

a
(k)φ

−
(k) = 0 where P a

(k) are generic matrices which have a polynomial

dependence on X,Ya. These equation have a nonzero solution (choosing a generic nonzero

φ+
(−1)) if

nφ

2 −n−
(3) ≥ nY +1, so the condition is nY ≤ nφ

2 −n−
(3)−1. The remaining equation

has the form
∑

k<3 φ+
(−1)P(k)φ

−
(k) = −f and can be solved by rescaling all φs.

Similar conditions can be found for the other cases. If there are fields with R = 1 the

condition is nY ≤ nφ

2 − n(1)

2 − n(−1) − 1, while if there are fields with R = 0 the condition

is nY ≤ nφ

2 − n(0) − 1.

D. SUSY vacua remnants

The existence of an R-symmetry is a sufficient condition for SUSY breaking in the models

discussed in sections 2.1, 2.2. More generally, R-symmetry is a necessary condition for

SUSY breaking under some hypothesis of genericity of the superpotential.

8From another point of view, two fields whose charges are not equal or complex conjugate belong to

different minimal subsets.
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Consider a superpotential W (ϕa) which has an R-symmetry and breaks SUSY spon-

taneously, and additional terms W r
R/(ϕa) which does not have R-charge 2. An immediate

consequence of the statements above is that the theory defined by

Wν = W + W R/ = W +
∑

r

νrW
R/
r ν = (ν1, ν2 . . .) (D.1)

generally has supersymmetric vacua 〈ϕa〉 = ϕ̃a(ν) which satisfy

∂bWν(ϕ̃a(ν)) = ∂bW (ϕ̃a(ν)) +
∑

r

νr∂bW
R/
r (ϕ̃a(ν)) = 0 (D.2)

so the SUSY-breaking vacua which survive for νr ≪ 1 are metastable. However, in the

limit νr → 0 the SUSY vacua are pushed to infinity [13].

The potential of the original νr = 0 theory along the direction of the SUSY vacua is

V (ϕ̃a(ν)) =
∑

b

|∂bW (ϕ̃a(ν))|2 =
∑

b

∣

∣

∣

∣

∣

∑

r

νr∂bW
R/
r (ϕ̃a(ν))

∣

∣

∣

∣

∣

2

(D.3)

Usually this potential doesn’t vanish for νr → 0 because the contribution of ∂bW
R/
r (ϕ̃a(ν))

can grow as 1/νr or faster, so the theory with νr = 0 has no memory of SUSY vacua when

they are pushed to infinity.

However there is an interesting exception. If the condition

sign(R(νr)) = sign(R(νr′)) = sign(2 − R(ϕb)) ≡ σ ∀r, r′ and ∀ϕb ∈ W R/ (D.4)

is satisfied, then the limit νr → 0 can be interpreted as a rescaling with respect to the

R-charges ϕa → ǫσR(ϕa)ϕa, νr → ǫσR(νr)νr with ǫ → 0. In this case metastability of

the R-symmetric superpotential can be easily explained, because the runaway vacuum is

exactly the SUSY vacuum pushed to infinity as νr → 0, and the runaway direction can be

found following the positions of SUSY vacua ϕ̃a(ν) for νr 6= 0. In fact we can parametrize

these vacua as ϕ̃a(ν(ǫ)) where νr(ǫ) = ǫσR(νr)νr(0) and the potential along the direction

parametrized by ǫ is

V (ϕ̃a(ν)) ∼
∑

ϕb∈W R/

|ǫ|2σ(2−R(ϕb)) (D.5)

whose minimum corresponds to ǫ → 0 and |ϕ̃a(ν(ǫ))| → ∞. The above argument means

that the metastability of vacua near the origin for νr = 0 is a remnant of their metastability

for νr 6= 0.

For the models with a single pseudomodulus there is a simple R-breaking perturbation

which explains the metastability of vacua with φ = 0:

W R/ =
∑

R(φj)>2

νjφj (D.6)

This perturbation satisfies the above conditions (D.4) and in fact it generates a SUSY vac-

uum with |φ| ∼ 1/νk which becomes a runaway vacuum when ν → 0. Similar perturbations

explain also the metastability of many vacua in models with more pseudomoduli.
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